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a  b  s  t  r  a  c  t

Computational  efficiency  is  highly  important  for  upscaling  detailed  electrode-level  and  cell-level  models
to the  system  level  required  for  the  design  and  control  of  fuel  cells.  We  present  a  computationally  efficient
1D +  1D  fuel  cell  model  based  on a  combination  of  analytical  and  numerical  approaches.  On  the  electrode
level,  we  develop  approximate  analytical  solutions  for the  1D  current/potential  distribution  via  a  hybrid
algorithm  of  power-law  approach  and  perturbation  method.  Compared  to the conventional  perturbation
method,  this  work  keeps  the  intrinsic  nonlinearity  of  electrochemical  kinetics,  while  providing  clearer
physical  meaning  than  some  purely  mathematical  methods  like  the  Adomian  decomposition  method.  By
integrating the  resulting  overpotential  profile  into  mass  transfer  models,  concentration  overpotentials
are  obtained  and  the  thermodynamic  framework  is then  used  for  analyzing  the  H2/CO electrochemical
co-oxidation  kinetics.  A  novel  expression  is  also  presented  to  interconvert  volume-  and  area-specific
nalytical model
ower-law approach

exchange  current  densities.  On  the  cell level,  a linear  relationship  between  local  current  density  and  solid
temperature  is  further  developed  for efficient  1D  +  1D  thermal  along-the-channel  numerical  simulations
without  requiring  computational  iterations.  Both  the  electrode-level  and cell-level  macroscopic  fuel  cell
models  are  validated  against  full  numerical  solutions  available  in the open  literatures  over  a  wide  range
of operating  conditions.  With  the hybrid  analytical/numerical  approximation  in  two  dimensions,  the
computational  framework  is  predicted  to  be sufficiently  efficient  for  real-time  simulations.

© 2012 Elsevier B.V. All rights reserved.
. Introduction

Fuel cells are environmentally benign, high-efficiency energy
onversion devices, and have been considered to be potential candi-
ates for stationary power plants, automotive engines and portable
pplications. Modeling and simulation techniques are becoming
ncreasingly important for both, understanding fundamental pro-
esses in fuel cells, and supporting design and optimization of fuel
ell systems.

In recent years, many researchers have been developing
ulti-scale modeling frameworks of fuel cells [1–5]. Microscopic
odeling aims at a physics-oriented explanation of the ele-
entary kinetics of electrochemistry and transport, including its
mpedance-based analysis [6–8]. Macroscopic models have been
eveloped for multi-dimensional, non-isothermal and transient
imulation with computational fluid dynamics (CFD) based codes

∗ Corresponding author at: Department of Thermal Science and Energy Engineer-
ng, School of Mechanical Engineering, University of Science & Technology Beijing,
eijing 100083, PR China. Tel.: +86 10 62333682; fax: +86 10 62329145.

E-mail address: baocheng@mail.tsinghua.edu.cn (C. Bao).

378-7753/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2012.03.023
[9–11]. Although a direct combination of microscopic and macro-
scopic models would provide a better fundamental understanding
of fuel cells, the complexity of both approaches makes it generally
difficult to couple them into one single multi-scale model due to
high numerical cost. On the other hand, simplified semi-empirical
and analytical models are widely used in predicting polarization
behavior of fuel cells [12,13].  However, the coarse framework and
lacking of physical meaning limits their application, especially for
spatially distributed modeling.

An accurate electrode-level and cell-level model with low
computational cost is essential for system-level analysis, espe-
cially for controller design and hardware-in-the-loop simulations.
Approximate analytical solutions provide a good balance between
mechanistic and semi-empirical models. Gurau [14] presented an
analytical solution of a transport model for polymer electrolyte
membrane fuel cells (PEMFCs) with the assumption of constant
overpotential in the catalyst layer. Considering the catalyst layer as
an infinitely thin interface, Tsai [15] proposed a two-dimensional

analytical expression of oxygen transport in the cathode diffusion
layer of a PEMFC. Costamagna [16] obtained an analytical solu-
tion of overpotential distribution in solid oxide fuel cell (SOFC)
electrodes by assuming constant gas concentration and exchange

dx.doi.org/10.1016/j.jpowsour.2012.03.023
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:baocheng@mail.tsinghua.edu.cn
dx.doi.org/10.1016/j.jpowsour.2012.03.023
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Nomenclature

A area (m2)
[A],[B] matrixes of linear relationship, [I] = [A][Ts] + [B]
C concentration (mol m−3)
Cp molar specific heat (J mol−1 K−1)
D diffusivity (m2 s) or channel depth (m)
F Faraday’s constant (96,487 C mol−1)
H molar enthalpy (J mol−1)
i0 volume-specific exchange current density (A m−3)
I0 area-specific exchange current density (A m−2)
I current density (A m−2)
j electrochemical reaction rate (A m−3)
k0 dimensionless variable in Eq. (3)
l electrode thickness (m)
L cell length (m)
n power-law index or number of control volumes
ne electrons transferred per reacting molecule, ne = 2
N flux (mol m−2 s−1)
p pressure (Pa)
r volumetric reaction rate (mol m−3 s−1)
R universal gas constant (8.314 J mol−1 K−1) or reac-

tion rate per area (mol m−2 s−1)
S molar entropy (J mol−1 K−1)
T temperature (K)
u velocity (m s−1)
W width (m)
x molar fraction or coordinate in thickness direction

(m)
y dimensionless overpotential, y = neF�/RT
z coordinate in the cell length thickness (m)

Greek letters
˛a anodic transfer coefficient
˛c cathodic transfer coefficient
� overpotential (V)
� heat conductivity (W m−1 K−1)
� potential (V)
� density (kg m−3)
� conductivity (S m−1)
� stoichiometric coefficient of reaction

Subscripts and superscripts
a anode
c cathode
e electrolyte
eff effective
el electronic conducting phase
h heat transfer
i, j species
in inlet
ion ionic conducting phase
m mass transfer
ref reference or reforming reaction
s solid phase

c
a
l
O
m
o
t

WGS  water gas shift reaction

urrent density. Considering variation of both gas concentration
nd overpotential, Bao [17] further proposed an approximate ana-
ytical solution of a transport model for anode-supported SOFCs.

ther approximate analytical expressions were also developed for
odeling channel flow and heat transfer in a fuel cell [18,19]. An

verview of analytical fuel cell models is given in Kulikovsky’s
extbook [20].
er Sources 210 (2012) 67– 80

This paper will firstly introduce a continuum transport model
in porous electrodes of a fuel cell. Depending on the electrode
thickness, different approximate analytical solutions of overpoten-
tial distribution, charge transfer, and electrochemical reaction are
developed and then applied for modeling the mass transfer for
various reactant systems. Finally, the 1D electrode model will be
introduced into a numerical 1D along-the-channel cell-level model.
An efficient computational framework is developed between the
local current density and cell temperature. The models and results
are discussed in the context of SOFCs, and are partly suitable for
PEMFCs.

2. Background: electrode-level charge transport model

The core structure of a fuel cell is a “sandwich” configuration
of the two  electrodes and the membrane (membrane-electrode
assembly, MEA). The electrodes of an SOFC, or the catalyst layers
of a PEMFC, are formed by a mixture of an ionic (ion) conductor,
an electronic (el) conductor, and pore space for gas diffusion, the
connection of which make up three-phase boundary (TPB) regions.
Close to the TPB, electrochemical reactions occur, exchanging
electrical charges between ionic conducting phase and electronic
conducting phase.

The model developed here is based on the following assump-
tions: the gas-phase is ideal, temperature and pressure are uniform
throughout the electrode, both of the two  conducting phases are
continuous and homogeneous, and only steady state is considered.
Furthermore, in order to decouple the problems of charge trans-
fer and mass transfer for computational efficiency, we neglect the
influence of gas concentration on the exchange current density and
electrochemical reaction.

Along the positive direction from electrode/channel (E/C)
interface to electrode/electrolyte (E/E) interface (x coordinate),
according to Ohm’s law, the charge transfer in two phases is

∇ · (−�ion∇�ion) = ∇ · (�el∇�el) = j (1)

where the � and � are the potential and conductivity, respec-
tively, and the electrochemical reaction rate j can be described by
a Butler–Volmer (BV) equation,

j = i0

[
exp
(

˛aneF

RT
�
)

− exp
(

−˛cneF

RT
�
)]

i0 = i0,ref exp
[
−Eact

R

(
1
T

− 1
Tref

)]
˘
(

pi

p0

)�i (2)

where F is the Faraday constant, R is the universal gas constant, T
is the operating temperature, ne is the number of electrons partic-
ipating in the electrochemical reaction, ˛a and ˛c are the anodic
and cathodic charge transfer coefficients, i0 is the volume-specific
exchange current density (which depends on both the TPB-specific
exchange current density and the microstructure of the electrode),
i0,ref is the reference exchange current density at the reference
temperature Tref, Eact is the activation energy, pi and �i are the
partial pressure and reaction order of species i. The overpotential
� is defined as the potential difference between the two phases
(�el − �ion) minus that in equilibrium. At the E/C interface, the ionic
current density completely transfers into the electronic current
density, while at the E/E interface, the electronic current density
completely transfers into the ionic current density.

The exchange current density i0 depends on species concentra-
tion (last term in Eq. (2)), which is generally a function of position
in the electrode thickness (here: x dimension) and along channel
length (here: z dimension). In the present work, in order to derive

computationally efficient analytical solutions, we assume that i0
is constant through the electrode thickness and varies only along
the channel length: the species bulk partial pressure at E/C interface
pi,b(z) rather than the TPB concentrations pi(x,z) is used in Eq. (2) for
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he concentration-dependent exchange current density. Note that
his assumption only influences the activation overpotential. The
oncentration overpotential is calculated using the fully resolved
oncentrations (Eq. (59)).

Define the following dimensionless variables

 = x

l
, y = f�, k0 = i0fl2

�t
(3)

here f = neF/RT, �t = �ion�el/(�ion + �el), l is the electrode thickness,
 and y are dimensionless electrode thickness and overpotential,
espectively, we obtain from Eqs. (1) and (2) the governing equation
or overpotential distribution in a composite electrode,

y
′′ = k0[exp(˛ay) − exp(−˛cy)]

y′(	 = 0) = N0 = − Ifl

�el
, y′(	 = 1) = N1 = Ifl

�ion

(4)

here I is the operating current density.
There are two main difficulties to solve this system analytically,

ne lies in the intrinsic equation structure related to the variable
0, the other is the strong nonlinearity of exponent function. In
ddition, lacking of Dirichlet-type boundary conditions also brings
ome difficulties to this boundary-value problem, which will be
xplained later.

The variable k0 is similar to the Thiele modulus for a classical
roblem of diffusion and reaction of gases throughout a porous cat-
lyst pellet in isothermal conditions. In the present situation, low
0 values mean that the electrode performance is kinetics-limited,
hereas high k0 values mean that the electrode performance is lim-

ted by the ionic conductivity. When k0 is small enough (k0 → 0),
he system reduces to a linear one, which does not satisfy the two
ewman-type boundaries at the same time. When k0 is big enough

1/k0 → 0), by multiplying 1/k0 at both sides of Eq. (4),  the differ-
ntial system reduces to an algebraic one, which means a strong
oundary effect; this has been discussed in our previous work [17].
ecause k0 is proportional to l2, both cases occur in practice due to
he wide range of electrode size, e.g. the anode in anode-supported
OFC and the catalyst layer in PEMFC.

In literature [16,17,20],  an exact solution of Eq. (4) has typically
een obtained via linearization of the exponent, that is, by assuming
hat overpotentials are low. It results in

lin = N1 − N0e−



(e
 − e−
)
e
	 + N1 − N0e



(e
 − e−
)
e−
	, 
 =

√
k0(˛a + ˛c) (5)

Based on the singular perturbation method (SPM), we have pre-
iously obtained an approximate profile of overpotential, which
onsists of a logarithmic term due to mass transfer and two expo-
ent terms due to boundary effects in a thick electrode [17]. When
he variation of gas concentration is neglected (the logarithmic
erm vanishes), it reduces to

spm = N1



e−
(1−	) − N0



e−
	 (6)

Although this expression provides a relatively compact form
nd clearer physical meaning, it is almost numerically identical to
q. (5) when e−
 → 0. Due to the inherent approximation of lin-
arization the exponent term, both of them are inaccurate when
he overpotential is not small. The key problem in this case is how
o keep the nonlinearity of system.

. Nonlinear approximation of the electrode-level model

.1. Adomian decomposition method
The Adomian decomposition method (ADM) allows solution of
onlinear functional equations of various kinds (algebraic, differ-
ntial, partial differential, integral, etc.) without approximating the
er Sources 210 (2012) 67– 80 69

operators [21]. For convenience to the reader, we  briefly introduce
the principle of ADM. Consider the generalized differential equation

Ly + Ry + Ny = g(	) (7)

where L is the highest order derivative, Ry is the linear differential
operator of less order than L, Ny represents the nonlinear terms,
and g(	) is the source term. Applying the inverse operator L−1 to
both sides of Eq. (7),  we  obtain

y = f (	) − L−1(Ry) − L−1(Ny) (8)

where the function f(	) represents the terms arising from integrat-
ing g(	). Next, the nonlinear operator Ny = F(y) is represented by an
infinite series of the so-called Adomian polynomials

F(y) =
∞∑

n=0

An (9)

Define the solution y(	) by the series

y =
∞∑

n=0

yn (10)

where the components yn are determined recursively by the mod-
ified ADM [22]

y0 = f0(	),
y1 = f1(	) − L−1(Ry0) − L−1(A0),
yk+2 = −L−1(Ryk+1) − L−1(Ak+1), k ≥ 0

(11)

where f(	) = f0(	) + f1(	), and the Adomian polynomials are con-
structed by the following algorithm

An(y0, y1, . . . , yn) = 1
n!

[
dn

d
n
F

(
n∑

k=0


kyk

)]

=0

(12)

In the fuel cell electrode model presented above (Eq. (4)), L is the
2nd-order differential and L−1 the two-fold integral, Ry = 0, g(	) = 0
and Ny = −k0[exp(˛ay) − exp(−˛cy)]. Therefore,

y0 = c0,

y1 = − Ifl

�el
	 + k0

2
(e˛ac0 − e−˛cc0 )	2,

y2 = k0

6
(˛ae˛ac0 + ˛ce−˛cc0 )

[
− Ifl

�el
	3 + k0

4
(e˛ac0 − e−˛cc0 )	4

]
, . . .

(13)

Substituting into Eq. (10), we  obtain the ADM solution of overpo-
tential, where the constant c0 can be determined by the boundary
condition, dy/d	

∣∣
	=1

= N1. Fig. 1 shows the comparison between

the exact solution and ADM approximation with a different number
of terms. With more terms, the ADM solution approaches gradually
to the exact solution. When k0 is not large, e.g. for the catalyst layer
in PEMFC, ADM is an effective method for approximation. How-
ever, more terms are generally required to ensure accuracy, which
leads a complicated expression without clear physical meaning.
Furthermore, it is hard to obtain an explicit expression due to the
implicit iteration of constant c0. Under the condition of a large k0
(k0 > 200), for example, for anode-supported SOFCs, we found the
ADM solution not satisfying and even not convergent.

3.2. Power-law approach

For thick electrodes, as present for example in anode-supported
SOFCs, 1/k is small enough to be a perturbation variable [17], which
0
can be applied to simplify the problem. Here, we employ a power
function to approximate the exponential functions, that is,

e˛ay − e−˛cy = k(y + a)n (14)
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Fig. 1. Comparison between the exact solution and ADM solution with a different
number of terms for parameters corresponding to an intermediate-temperature
S
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− ylin,WKB(0)]	(1 − 	)e (29)
OFC: l = 50 �m, ˛a = ˛c = 0.5, i0 = 5 × 108 A m−3, I = 4 × 104 A m−2, T = 1073.15 K,
ion = 2.267 S m−1, �el = 3.03 × 104 S m−1 and k0 = 11.93.

here k, a, n are parameters to be determined later. Substituting
nto Eq. (4) yields

y
′′ = k0k(y + a)n

y′(1) = N1

t=y+a−→
{

t′′ = k0ktn

t′(1) = N1
(15)

The solution of the above system is a power-law expression,
hat is, t = t(1)[1 + b(1 − 	)]m. Substituting into Eq. (15), we  obtain

 = 2/(1 − n) and

b2

k
= k0(1 − n)2

2(1 + n)
[y(1) + a]n−1

−2b[y(1) + a] = (1 − n)N1

(16)

In order to obtain values for the coefficients, both the zero-order
nd first-order differential of the power function approach is set to
hat of the corresponding full exponential expression at the E/E
nterface.

f1 = e˛ay(1) − e−˛cy(1) = k[y(1) + a]n

f2 = ˛ae˛ay(1) + ˛ce−˛cy(1) = nk[y(1) + a]n−1 (17)

The explicit expressions of n, a, k, b can be solved from Eqs. (16)
nd (17)

n = f2N2
1

2k0f 2
1 − f2N2

1

, a = f1N2
1

2k0f 2
1 − f2N2

1

− y(1),

k = f1

(f1N2
1/(2k0f 2

1 − f2N2
1))

n , b = −2N1(2k0f 2
1 − f2N2

1)

(1 − n)f1N2
1

(18)

In order to determine y(1), we reenter into the original system
f Eq. (4) to obtain an exact implicit solution

y′)2 = 2k0

(
1
˛

e˛ay + 1
ˇ

e−˛cy + C
)

(19)

As mentioned above, lacking Dirichlet-type boundary condition
rings difficulty to determine the constant C. Considering the sign of
st- and 2nd-order derivatives at the electrode boundaries (d2y > 0,
y(0) < 0, dy(1) > 0), the solution should show a concave profile. For

 thick electrode, most of the electrode is inactive to electrochem-

cal reaction, which means at the minimum point

′ = 0, y ≈ 0 (20)
er Sources 210 (2012) 67– 80

Therefore, C = −(1/˛a + 1/˛c), and the overpotential at the E/E
interface y(1) can be solved by

2k0

(
1
˛a

e˛ay(1) + 1
˛c

e−˛cy(1) − 1
˛a

− 1
˛c

)
= N2

1 (21)

When ˛a = ˛c, there is an exact solution

y(1) = 1
˛a

ln

⎛
⎝1

2

⎡
⎣˛aN2

1
2k0

+ 2 +

√(
˛aN2

1
2k0

+ 2

)2

− 4

⎤
⎦
⎞
⎠ (22)

Thus, we  get an explicit power function which is valid in the
region close to the E/E interface

yp1 = [y(1) + a][1 + b(1 − 	)]2/(1−n) − a (23)

The power function close to the E/C boundary can be obtained
similarly and is given by

yp0 = [y(0) + a′][1 − b′	]2/(1−n′) − a′ (24)

where a′, b′, n′, y(0) are calculated by replacing N1, y(1) to N0, y(0)
in all the related equations.

3.3. Hybrid power law and linear approximation

The power law approximation as derived above is valid only in
the region close the electrode interfaces. On the other hand, the lin-
ear approximation (Eq. (5)) should be valid in most of the region in a
thick electrode due to a small electrochemical reaction rate. There-
fore, we  propose a hybrid function to make a smooth transition
between these two expressions.

Based on the analysis of boundary-layer effect in our previous
work [17], we  construct

y = ylin,WKB + (yp1 − ylin,WKB)e−s0
(1−	) + g1(	) (25)

where

ylin,WKB = (N1 − N0e−s0
)es0
	 + (N1 − N0es0
)e−s0
	

s0
(es0
 − e−s0
)
,

s0 =
√

e˛a − e−˛c

˛a + ˛c
(26)

Here, we apply an additional correction to the linear approxima-
tion (Eq. (5)) based on the WKB  (Wentzel, Kramers and Brillouin)
perturbation method [23], which is explained in detail in Appendix
A. In order to make y strictly satisfy the boundary conditions in Eq.
(4), g1(	) is added and derived by considering the requirements

g1(0) = 0, g′
1(0) = 0, g1(1) = 0,

g′
1(1) = −s0
[yp1(1) − ylin,WKB(1)] (27)

yielding

g1(	) = s0
[yp1(1) − ylin,WKB(1)]	(1 − 	)e−s1
(1−	) (28)

In principle, the slope rate s1 should be fitted from the exact
numerical solution. However, we tried to simply chose s1 = 1.3s0,
which is satisfying enough in a wide range of applications.

The final approximation solution using the hybrid power-law
and linearization approach is

y = ylin,WKB + (yp1 − ylin,WKB)e−s0
(1−	) + s0
[yp1(1) − ylin,WKB(1)]

	(1 − 	)e−s1
(1−	) + (yp0 − ylin,WKB)e−s0
	 + s0
[yp0(0)

−s1
	
In practical fuel cells, the electronic conductivity is generally
much larger than the ionic conductivity (�ion 	 �el), the boundary
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ig. 2. Comparison between the exact solution and different approximation solut
0 = 5 × 108 A m−3, I = 4 × 104 A m−2, T = 1073.15 K, �ion = 2.267 S m−1, �el = 3.03 × 10
hickness, (b) logarithmic presentation of the same data, and (c) linear presentation

ffect at the E/C interface is negligible and only the first three terms
n Eq. (29) are needed.

For a typical anode-supported SOFC, Fig. 2(a) shows the overpo-

ential profiles calculated via the exact numerical solution, linear
pproximation in Eq. (5),  SPM approximation in Eq. (6), WKB
pproximation in Eq. (26), hybrid power-law approximation in

ig. 3. Index of the power function (Eq. (14)) as function of the operating current
ensity, other parameters are identical to those in Fig. 2.
or parameters corresponding to an anode-supported SOFC: l = 1 mm,  ˛a = ˛c = 0.5,
1 and k0 = 4771. (a) Linear presentation of overpotential as function of electrode
e region close to E/E interface.

Eq. (29) and the power function in Eq. (23). All the overpoten-
tial profiles show a strong boundary-layer effect due to a large k0.
For a clearer image, Fig. 2(b) and (c) further shows the logarith-
mic  or linear overpotential profile within the whole electrode or
the region close to the E/E interface. The linear and SPM approx-
imations are almost overlapping as mentioned before. Note that
although starting from the assumption of a thick electrode, the
power-law approach is found to be accurate as k0 > 20, which cor-
responds to an electrode thickness of around 60 �m assuming
other typical parameters. Fig. 3 shows the effect of the operat-
ing current density on the index of power function. As current
density decreases, the power-law index approaches gradually to
unity, which means a linear approximation. Fig. 4(a) and (b) respec-
tively shows the linear- and logarithmic-type exact and power-law
solutions when the electronic conductivity is equal to the ionic con-
ductivity (�ion = �el). Such a situation is present in the so-called
IDEAL-cell concept [24], as a result, all the five terms in Eq. (29) are
necessary, thus the boundary-layer effects at both sides of electrode
can be accurately reflected by the power-law approximation. Due
to analytical expression, the hybrid power-law and linear approx-
imation is smoother than the exact numeric solution with 250
finite-difference discrete grids.

3.4. Relationship between volume-specific and area-specific

exchange current densities

In the above electrode model, electrochemical reactions are
assumed to occur throughout the complete thickness of the porous
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Fig. 4. Comparison between the exact solution and power-law approximation for
� = � and I = 3 × 104 A m−2, other parameters are identical to those in Fig. 2. (a)
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x1(x) = x1,b − �1�t
[

�(x) − �(0) − I
x
]

(36)
el ion

inear and (b) logarithmic presentation.

lectrode (volumetric model). The exchange current density i0 is
 volume-specific parameter (given in Ampere per electrode vol-
me). On the other hand, many models in literature assume that
lectrochemistry takes only place at the E/E interface (interfacial
odel). The exchange current density used in those models is an

rea-specific parameter (given in Ampere per cell area), that is,

 = I0[exp(˛af�act) − exp(−˛cf�act)] (30)

here �act is the total activation overpotential, I0 the area-specific
xchange current density.

Eq. (19) provides an exact solution of the overpotential at the
/E interface, �E/E. As �ion 	 �el, �E/E is almost equal to the total
ctivation overpotential (refer to Eq. (59)). Due to equivalence of
hese two modeling approaches, �act = �E/E, a relationship between
olume-specific and area-specific exchange current densities can
e derived. For ˛a = ˛c,

0 = aa�tfI2

2�2
ion

(√
(I2/I2

0) + 4 + aaC
) (31)
For a thick electrode (Eq. (20) is valid), ˛aC = −2. Expand the
quare root term based on the binomial theorem as generally
er Sources 210 (2012) 67– 80

(I/I0)2 	 1, we obtain an expression independent of the operation
current density

i0 = 2I2
0aa�tf

�2
ion

≈ 2I2
0aaf

�ion
(32)

This expression shows a nonlinear relationship between these
two exchange current densities, which is different to the common
relationship with a simple geometric factor, i0 = I0fgeo, which we
believe lacks theoretical support.

4. Integration of mass transfer into electrode-level model

The model presented in the sections above treats charge transfer
only. Here, we  add expressions for mass transfer. Note that, in order
to decouple mass and charge transport formulations, the influence
of concentration on exchange current density is neglected in this
work. The mass transfer of multi-component gas species in a porous
electrode is governed by the Stefan–Maxwell equations,

∇xi =
∑
j /=  i

xiNj − xjNi

cDij,eff
(33)

where c is the concentration of gas mixture, xi = ci/ct and Ni are
the molar fraction and flux of species i, respectively, Dij,eff is the
effective diffusivity, which includes the binary diffusivity between
species i and j (Dij) and their Knudsen diffusion coefficients (Di,K,
Dj,K) and is corrected by the electrode porosity (ε) and tortuosity
(�) as [2]

Dij,eff = ε

2�2

[
1

(1/Dij) + (1/Di,K)
+ 1

(1/Dij) + (1/Dj,K)

]
,

Di,K = 2
3

rP

√
8RT


Mi
(34)

where rP is the average particle size of electrode and Mi is the
molecular weight of species i.

The mass balance of species i is given by

∇ · (Ni) = �ij

neF
+
∑

k

�i,krk (35)

where �i, �i,k are the stoichiometric coefficients of species i in the
electrochemical reaction and in chemical reaction k (e.g., reforming
reaction and water gas shift reaction), respectively.

As boundary conditions, the species concentration at the E/C
interface is assumed to be equal to the bulk channel concentration,
and at the E/E interface, the species can not penetrate the dense
electrolyte layer (note this assumption is not correct for PEMFCs,
where there is complex water management in the PEM), that is,
xi(x = 0) = xi,b, Ni(x = l) = 0.

4.1. H2–H2O or CO–CO2 system

In this binary stationary system (1: H2, 2: H2O),  equimolar
counter diffusion occurs (N1 = −N2) and there are no chemical
reactions, that is, dN1/dx = �1j/neF or d2x1/dx2 = −�1j/cD12,effneF.
Because d2�/dx2 = j/�t, there is a simple relationship between the
profiles of gas concentration and overpotential
cD12,effneF �ion

where �(x) has been determined from the power-law approach.
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.2. H2–H2O–N2 or CO–CO2–N2 system

In this case (1: H2, 2: H2O, 3: N2), N2 is inert (N3 = 0,
ote that we investigate the stationary case only) and H2-
2O shows an equimolar counter diffusion (N1 = −N2), i.e.
2(ln x3)/dx2 = �1j(1/D13,eff − 1/D23,eff)/cneF. So,

3(x)

= x3,b exp

(
�t�1

cneF

(
1

D13,eff
− 1

D23,eff

)[
�(x) − �(0) − I

�ion
x
])

(37)

1(x)

= x1,b − D23,eff[D13,eff ln(x3/x3,b) + (D12,eff − D13,eff)(x3 − x3,b)]
D12,eff(D23,eff − D13,eff)

(38)

When x3,b = 0, Eq. (38) reduces to Eq. (36) automatically.

.3. O2–N2 system

Consider N2 is inert (N2 = 0), that is,
2(ln x2)/dx2 = �1j/cD12,effneF. Therefore,

2(x) = x2,b exp

(
�1�t

cD12,effneF

[
�(x) − �(0) − I

�ion
x
])

(39)

.4. O2–N2–H2O system

It is a typical case in cathode catalyst layer of PEMFC (1:
2, 2: N2, 3: H2O). Assume the net water and gas-species flux
ia the membrane is zero for simplicity, that is, N2 is inert
N2 = 0) and O2–H2O flux are related to as N1/�1 = N3/�3. So,
2(ln x2)/dx2 = (�1/D12,eff + �3/D23,eff)j/cneF, which leads to

2(x)

= x2,b exp

(
�t

neF

(
�1

cD12,eff
+ �3

cD23,eff

)[
�(x) − �(0) − I

�ion
x
])
(40)

1(x)

=
(

x1,b − �1

�1 + �3
+ ax2,b

m − 1

)(
x2

x2,b

)m

+ �1

�1 + �3
− a

m − 1
x2

(41)

here

 = (�1 + �3)D23,effD12,eff

D13,eff(�1D23,eff + �3D12,eff)
, a = �1m

�1 + �3

(
1 − D13,eff

D12,eff

)
(42)

.5. H2–H2O–CO–CO2–N2 system

Instead of the Stefan–Maxwell equation, we use Fick’s law for
his case to describe the multi-component (1: H2, 2: H2O, 3: CO, 4:
O2, 5: N2) mass transfer using a simple analytical solution, that is,
i = −cDi
dxi

dz
+ xi

5∑
j=1

Nj (i = 1, 2, 3, 4) (43)
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where Di is the Fick diffusivity of species i, which is considered
constant for simplicity. Because Fick’s law is not strictly valid
for multi-component transport, N2 is treated here as a balancing
species, that is, the above equation is not used for N2 and the N2
molar fraction (x5) follows from

∑
xi = 1.

Consider electrochemical oxidations of both H2 and CO,

dN1

dx
= −dN2

dx
= − ωj

neF
+ rWGS,

dN3

dx
= −dN4

dx
= − (1 − ω)j

neF

− rWGS (44)

where ω is the proportion of H2 electrochemical current density in
the total current density, ω = jH2 /(jH2 + jCO), and rWGS is the rate of
the water-gas shift reaction (CO + H2O � CO2 + H2), which is con-
sidered as the only chemical reaction in this paper. Note that in the
present work we  neglect carbon formation (e.g., due to Boudouard
reaction); also, because no CH4 is assumed present, there are no
steam reforming or dry reforming reactions.

At the E/E interface, fluxes of all the species are zero
( Ni

∣∣
x=l

= 0), which leads to N1 = −N2, N3 = −N4,
∑

Ni = 0,

dN1/dx + dN3/dx = −cD1d2x1/dx2 − cD3d2x3/dx2 = −j/neF. Therefore,

D1x1 + D3x3 = �t

cneF
� − �tI

cneF�ion
x + a = f (x) (45)

D1x1 + D2x2 = D1x1,b + D2x2,b, D3x3 + D4x4 = D3x3,b + D4x4,b

(46)

where a = D1x1,b + D3x3,b − �t�(0)/cneF. Assume the water-gas shift
reaction is in thermodynamic equilibrium (rWGS = 0), i.e.

x1x4 = Kshiftx2x3 (47)

where Kshift is the equilibrium constant of water shift reaction,
we obtain the concentration distribution of species from Eqs.
(45)–(47),

x1(x) = b(x) −
√

b2(x) − 4k(k − 1)(D1x1,b + D2x2,b)f (x)

2D1(k − 1)
(48)

where k = KshiftD1D4/D2D3 and

b(x) = (k − 1)f  (x) + k(D1x1,b + D2x2,b) + D3x3,b + D4x4,b (49)

The concentrations of other species can be obtained by substi-
tuting x1 into Eqs. (45) and (46). Like the other cases mentioned
above, the profile of gas concentrations can be used to calculate the
concentration loss and limiting current density based on Fick’s law.

More importantly, an analytical expression of the proportion of
H2 electrochemical current density is available from the explicit
profiles of H2 concentration and overpotential, that is,

ω(x) = (cD1neF/�t)(d2x1/dx2)
(d2�/dx2)

(50)

For analysis of H2 and CO electrochemical co-oxidation, gener-
ally different exchange current densities are used for H2 and CO,
but the uncertainties of these kinetic data are currently under wide
discussion. On the other hand, because the water gas shift reaction
(WGSR) is fast and usually assumed to be in equilibrium, it is not
possible to separate the different exchange current densities from
an analysis of gas concentrations only. Still, the present framework,
resulting in Eq. (50), provides some information for kinetic analy-
sis. Here, the unique exchange current density can be explained as
a global or overall one corresponding to the overall overpotential
driving both H2 and CO oxidation. Fig. 5 shows the proportion of H2

electrochemical current density in the total current density, ω, in
the active zone under the conditions of different fuel compositions.
The active zone is also called boundary layer of electrochemical
reaction, where 99% variation of the ionic current density occurs
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Fig. 5. Ratio of H2 over the total electrochemical current density in the active zone
for  different fuel composition of case 1: 31.77% H2–18.23% H2O–28.23% CO–16.77%
C
C
N

[
o
i
w
e
o

5

d
m
c
s
a
c

5

e

c

i
(
s
p
a
v
t
e
c
a

)

O2–5% N2, I = 2 × 104 A m−2, case 2: 22.24% H2–7.76% H2O–47.76% CO–17.24%
O2–5% N2, I = 1 × 104 A m−2, case 3: 8.98% H2–1.02% H2O–76.02% CO–8.98% CO2–5%
2, I = 0.5 × 104 A m−2, and the other parameters are the same as those in Fig. 2.

17]. It is obvious that the fuel composition has a great influence
n the electrochemical kinetics of H2 and CO. As CO concentration
ncreases or H2 concentration decreases, ω decreases. However,

hen the concentrations of H2 and CO are comparable, most of
lectrochemical current density (over 80% in case 1) results from
xidation of H2.

. Along-the-channel cell-level model

The approximate analytical solution of electrode-level model
erived above is further integrated into a 1D thermal cell-level
odel where transport of mass and heat along a single channel is

onsidered. This yields an overall 1D + 1D model, where the dimen-
ion x through the MEA  is solved analytically and the dimension z
long the channel length is solved numerically. Only steady state is
onsidered here.

.1. Governing equations and background

Along the coordinate of channel length, z ∈ [0, L], the gas-phase
nergy balance, species and overall mass balance are given by [4]

kukCp,k
∂Tk

∂z
= Qk (k = a, c) (51)

∂(cuxi)k

∂z
=  Sm,k(−�ribNi,E/C + �i,refRref + �i,WGSRWGS)k (52)

∂(cuT)k

∂z
= TkSm,k

∑
i

(−�ribNi,E/C + �i,refRref + �i,WGSRWGS)k + Qk

Cp,k

(53)

Here, Eq. (53) is a combination of the total mass balance and the
deal gas law, p = cRT, so ∂p/∂t = R(T∂c/∂t + c∂T/∂t). Substituting Eqs.
51) and (52) to this expression, one will find that there is no tran-
ient term (even for transient simulation) when not considering the
ressure dynamics (∂p/∂t = 0, ∂p/∂z is not forcedly excluded). The
dvantage of this formulation is to provide an equation with gas
elocity included as dependent variable, as we do not put forward

he complex momentum equation (like in the full Navier–Stokes
quations). This treatment has been shown before to be numeri-
ally much more stable than the direct use of the ideal gas law [4],
nd can be also found in Heidebrecht’s work [25].
er Sources 210 (2012) 67– 80

The heat source is given by

Qk = Sh.khk(Ts − Tk) + Sm,k

[
−
∑

i

(�i,refHi,aRref + �i,WGSHi,aRWGS)

+
∑

i

max(−�ribNi,E/C, 0)Cp,i(Ts − T)

]
k

(54)

where Ta, Tc, Ts are temperature of the anode gas, cathode gas and
solid matrix, u is the gas velocity, h is the convective heat transfer
coefficient, xi, Cp,i and Hi are the molar fraction, molar specific heat
and enthalpy of species i, Cp =

∑
iCp,ixi is the gas molar specific heat.

For rectangular flow channels in a typical planar SOFC, the specific
mass transfer area (Sm) and heat transfer area (Sh) per unit volume
of flow channel and rib coefficient (�rib) are

Sm,k = 1
Dch,k

, Sh,k = 2(Dch,k + Wch)
Dch,kWch

, 	rib = 1 + Wrib

Wch
(55)

where Dch, Wch are the depth and width of flow channel and Wrib
is the rib width.

For the solid-phase energy balance it is assumed that tem-
perature varies only in z direction, while in x direction all solid
components (MEA and interconnectors) have the same tempera-
ture. Radiant heat transfer is neglected. The energy balance is given
by

�s
∂2Ts

∂z2
=
∑
k=a,c

�k�ribSm,k

∑
i

Ni,E/CHk,i(Tk, Ts)

−
∑
k=a,c

�kSh,khk(Tk − Ts) + �c�ribSm,cI(z)Vcell (56)

where �s is heat conductivity, �k = Dch,kWch/(Acon,a + Acon,c + lMEAWch
the ratio of solid-phase heat conduction area to gas-phase mass
or heat transfer area, where lMEA is the MEA  thickness, Acon the
section area of interconnector.

The cell voltage, Vcell, which is assumed constant along the chan-
nel (ideal conductivity of the interconnectors), can be obtained by

Vcell = Voc(z) − �t,a(z) − �t,c(z) − I(z)le
�ion

(57)

where I(z) is the local cell-area-specific current density, le the thick-
ness of the electrolyte layer, the local open circuit voltage, Voc is
calculated by the Nernst equation

Voc = E0,ref + �Sref

neF
(Ts − Tref) + RT

neF
ln

xH2,b(pcxO2,b/p0)0.5

xH2O,b
(58)

where E0,ref, �Sref are the reference electromotive force and
entropy change of the overall electrochemical reaction (here:
H2 + 0.5O2 → H2O), and the total overpotential everywhere along
the channel, �t(z) can be obtained from the approximation solution
�(z,x) and xi(z,x) of the local electrode-level model via

�t(z) = 1
�el + �ion

[�ion�(z, 0) + �el�(z, l) + I(z)l] + RT

neF
ln

xi(z, l)
xi(z, 0)

(59)

The overall equation system represents the implicit relation-
ship between cell voltage Vcell and average cell current density Icell.
Either can be independently specified, and the other value is sim-
ulated. The fuel cell is generally treated as a set of parallel discrete
elements with uniform cell voltage and non-uniform local current
densities. Thus, as shown in Fig. 6, a high-level iteration loop is

required for the cell voltage or average current density. This itera-
tion loop greatly increases the computational cost and also the risk
of numerical divergence, although this problem can be alleviated
by equation-oriented solvers like gPROMS [4].
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.2. Discrete form and model simplification

Assuming that the total gas pressure, gas molar specific heat, and
lectrochemical reaction heat (�H) are constant, we  further sim-
lify the computational framework of distributed modeling. For the
implest case in SOFCs, that is, H2/H2O at the anode and O2/N2 at
he cathode, Rref = RWGS = 0, Ni,E/C = −�iI(z)/neF, caua = ca,inua,in, and
he variation of total gas molar flux in the cathode flow channel is
onsidered negligible (ccuc = cc,inuc,in) due to a generally large stoi-
hiometry of O2 and dilute effect of N2. Based on the control-volume
iscretization approach as shown in Fig. 7, we  can obtain the fol-

owing discrete forms according to the power law or the upwind

cheme [26].

For co-flow,

a,j ≈ aTa,j−1 + (1 − a)Ts,j, Tc,j = bTc,j−1 + (1 − b)Ts,j

(j = 2, . . . , n + 1) (60)

Fig. 7. Discrete scheme of control vol
 loop in distributed fuel cell modeling.

xH2,j = xH2,j−1 + kH2Ij−1, xO2,j = (xO2,j−1 + kO2Ij−1)
(1 + kO2Ij−1)

(61)

and for counter-flow,

Ta,j = aTa,j−1 + (1 − a)Ts,j, Tc,j = bTc,j+1 + (1 − b)Ts,j

(j = 2, . . . , n + 1) (62)

xH2,j = xH2,j−1 + kH2Ij−1, xO2,j = (xO2,j+1 + kO2Ij−1)
(1 + kO2Ij−1)

(63)

where

a = 1
(1 + (Sh,a�zha/ca,inua,inCp,a))

,

b = 1
(1 + (Sh,c�zhc/cc,inuc,inCp,c))

kH2 = Sm,a�rib�H2�z

neFcin,aua,in
, kO2 = Sm,c�rib�O2�z

neFcc,inuc,in

(64)

umes used in the present work.
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Fig. 8. Comparison between pressure-dependent V–I performances of the approxi-
mation solution (this work) and numerical elementary kinetic simulation [27]. The
parameters are: la = 540 �m,  lc = 55 �m,  le = 10 �m,  Wch = 2 mm,  Dch,a = Dch,c = 2 mm,
Wrib = 2 mm,  rP,a = 0.5 �m,  rP,c = 0.25 �m,  εa = 0.32, �a = 2.9, εc = 0.4, �c = 1.4,
�ion = 5.15 × 107/T exp(−84,000/RT) S m−1, �el,a = 9.5 × 107/T exp(−1150/T) S m−1,
�el,c = 4.2 × 107/T exp(−1200/T) S m−1, Eact,a = 130 kJ mol−1, Eact,c = 125 kJ mol−1,
˛a = ˛c = 0.5, i0,H2 = 1 × 108 A m−3, �H2 = 0.5, �H2O = 0, T = Ta,in = Tc,in = Tref = 1073.15 K,
Ieq,fuel = 2 × 104 A m−2, Ieq,air = 4 × 104 A m−2, and the cathode overpotential is
calculated by interfacial BV model as I0,O2 = 3.6 × 104 A m−2, �O2 = 0.466.

Fig. 9. Comparison between V–I performances of the approximate simulation (this
work) and a full numerical model [4] under different fuel compositions for case 1:
97% H2–3% H2O, case 2: 48.5% H2–1.5% H2O–50% N2, case 3: 19.4% H2–0.6% H2O–80%
N2.

Fig. 10. Comparison between 1D + 1D simulation and 1D simulations (through electrode thickness). The 1D model uses as boundary conditions for bulk concentration at
channel/electrode interface (a) 1D + 1D inlet species concentrations, (b) 1D + 1D outlet species concentration, (c) arithmetic mean and (d) logarithmic mean between 1D + 1D
inlet  and outlet species concentration. Parameters are identical to those in Fig. 8 and the fuel compositions are identical to the three cases in Fig. 9.
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Fig. 11. Along-the-channel profiles of local current density, solid and gas temperatures and overpotentials of both exact and approximate calculations in the case of (a)
concurrent flow, (b) countercurrent flow. Fuel composition is 97% H2–3% H2O and air is used as oxidant. For concurrent flow, Ta,in = Tc,in = 975.15 K, and for countercurrent
fl

e
t
I

ow  Ta,in = Tc,in = 958.15 K, other basic parameters are identical to those in Fig. 8.
Substituting Eq. (60) or (62) into Eq. (56), we can get a lin-
ar relationship between the local current densities and solid
emperatures, [I] = [A][Ts] + [B], which is explained in Appendix B.
n this case, the calculating mode with given Vcell (cf. Fig. 6) is
adopted. Substituting the gas concentrations (Eq. (61) or (63)) as
functions of Ts(z) or I(z) into Eqs. (57)–(59), a fast and stable along-
the-channel computation can be obtained without V–I iteration
loop.



7  of Pow

6

6

n
p
p
u
i
d
A
i
a
a
c
r
v
f
t
P
f
c
v
a
d

a
e
l
a
a
c
r
i
i
a
(
c
d
c
f
f
z

6

w
r
c
p
o
i
c
c
i
u
f
t
d
r
a
c
e
i

8 C. Bao, W.G. Bessler / Journal

. Results and discussion

.1. Isothermal 1D + 1D simulations

We first compare the present model, which is based on a
umber of approximation assumptions, to two different more com-
lex literature models. Fig. 8 presents the pressure-dependent V–I
erformance of an anode-supported SOFC. Our approximate sim-
lation is compared to a model by Henke et al. [27], which is

mplemented in an in-house C-code software package DENIS for
etailed electrochemistry and numerical impedance simulation.
ll the cases are isothermal and under countercurrent flow. The

nlet fuel and oxidant flow rates are set to a current-density equiv-
lent (Ieq) of 2 and 4 A cm−2, respectively. The present model was
djusted to the numerical model by fitting the volumetric exchange
urrent density in the anode, anode average particle size, and H2
eaction order. The overestimation of the present model in the acti-
ation zone is probably due to the different electrochemical kinetics
rameworks (one is based on overall Butler–Volmer equation and
he other is based on elementary kinetics). On a 2.26 GHz, 1.92 GB
C, the computational time is 0.87 s per point along the IV-curve
or the present Matlab-code approximate model (20 along-the-
hannel control volumes) and average 430 s per point (10 control
olumes along the channel length and 22 control volumes along the
node thickness) for the detailed Henke et al. model. These numbers
emonstrate the high performance of the present algorithm.

Fig. 9 further compares the V–I performance between the
pproximate simulation and numeric calculation by a model of Bao
t al. [4]. The latter is based on a gPROMS implementation of a multi-
evel SOFC modeling platform [4],  which uses the identical physics
s described in the present paper, however without approximating
ssumptions. The comparison is carried out for three different fuel
ompositions. All the cases are isothermal and under countercur-
ent flow, and the cell configuration and simulation parameters are
dentical to those used in Fig. 8. The two simulations are almost
dentical as predicted both under open circuit conditions as well
s under diffusion-limited conditions. The Bao et al. model. [4]
20 along-the-channel control volumes and 15 along-the-anode
ontrol volumes based on orthogonal collocation finite elements
iscretization method) takes average 15 s for each point along I–V
urve. Therefore, the approximate approach is dozens of times
aster than the equation-based solver in gPROMS and furthermore
ound to be more robust in the activation and concentration loss
one.

.2. 1D simulations using effective bulk concentrations

As exemplary application of the present model, we compare 1D
ith 1D + 1D isothermal simulations. For a potential further model

eduction, it is interesting to investigate under which boundary
onditions a simple 1D model can best represent a more com-
lex 1D + 1D simulation. In particular, we compare four different
ptions for the species bulk concentration at the channel/electrode
nterface, (i) using the inlet concentration, (ii) using the outlet con-
entration, (iii) using the arithmetic mean between inlet and outlet
oncentrations, and (iv) using the logarithmic mean between the
nlet and outlet concentrations. Fig. 10 compares the 1D + 1D sim-
lation with these four kinds of 1D simulations under different
uel compositions. As Fig. 10(a) shows, taking the inlet concentra-
ion leads to a considerable overestimation of the limiting current
ensity. In this case, consumption of fuel and oxidant cannot be
eflected reasonably, which results in the species concentration

t the electrode/electrolyte interface even higher than the outlet
oncentration. According to the upwind scheme in 1D + 1D mod-
ling, the outlet species concentration is taken as the bulk one
n each control volume, i.e. each element cell is considered as a
er Sources 210 (2012) 67– 80

continuous stirred-tank reactor (CSTR). However, Fig. 10(b) shows
that, using the outlet concentration in 1D simulation results in an
obvious underprediction of cell performance. The method of arith-
metic mean provides a balance between the first two options, but
still leads to an overestimation of the limiting current density as
shown in Fig. 10(c). As shown in Fig. 10(d), the logarithmic mean
seems to be the best one with regard to the limiting current den-
sity. The physical meaning of logarithmic mean concentration can
be compared to the logarithmic mean temperature difference in
heat exchangers. Bao et al. have previously used the concept of log-
arithmic mean bulk concentrations in modeling of PEM fuel cells
and systems [28,29].

6.3. Full thermal 1D + 1D simulations

Finally, we apply the full thermal 1D + 1D model. Fig. 11 shows
along-the-channel profiles of the local current density, solid and
gas temperatures and overpotentials. The results of the approxi-
mate model (this work) are compared to exact solutions (Bao et al.
model [4]) under non-isothermal condition. For these simulations,
the inlet fuel and air temperatures were adjusted to values of 702
and 685 ◦C, which makes the average cell temperature approxi-
mately 800 ◦C. Here, the exact solution in gPROMS [4] considers the
radiant heat transfer between the MEA  and interconnectors with
detailed view factor models, while it is excluded in the approximate
calculation due to the assumption of identical local temperature in
the both solid phases. As shown in Fig. 11(a) and (b), the approxi-
mate model as derived in the present work agrees well with the
exact solution under both co-flow and counter-flow conditions.
Moreover, the approximation method is found to be rather sta-
ble even with a coarse mesh grid. The present model with 20
or 50 along-the-channel control volumes takes only 1.3 and 6.7 s
respectively to complete a full thermal 1D + 1D numeration, while
it correspondingly takes average 100 or 340 s for the gPROMS-code
exact computation.

7. Conclusions

As balance between full mechanistic and semi-empirical fuel
cell models, approximate analytical solutions provide a computa-
tionally efficient framework with a clear physical meaning. This
is an important aspect for multi-scale models and/or real-time
simulations of fuel cells, where a compromise needs to be found
between computational speed and model precision. In the present
work, analytical solutions for 1D through-the-electrode charge
and mass transport were developed and integrated into a 1D
along-the-channel thermal numerical simulation. The approxima-
tion approaches shown in this paper keep the intrinsic nonlinearity
of system.

For charge transport and reaction inside a thin porous electrode,
overpotential shows a smooth profile and perturbation method
generally fails to find a small enough variable. Therefore, a mod-
ified Adomian decomposition method (ADM) was applied and
validated. Furthermore, an explicit hybrid algorithm of power-law
approach and linear approximation based on WKB  perturbation
method was  introduced to overcome some disadvantages in the
ADM solution (too many terms, lacking of clear physical mean-
ing, implicit iteration). Although starting from a thick electrode,
this algorithm is validated to accurately reflect the boundary-layer
effects at both electrode interfaces in a wide range of applica-

tions. In addition, a novel expression was  developed to interconvert
the volume-specific and area-specific exchange current densities,
which provides a better theoretical explanation over the common
linear relationship via a simple geometric factor.



of Pow

g
d
t
s
d
t
f

t
w
s
O
fi
d
T
n
w
a
u
1

c
p
o
u
f

A

t
F
a
t

A

y

w




v

y

∑

G

C. Bao, W.G. Bessler / Journal 

Exact solutions of mass transfer of different fuel-cell-relevant
as mixtures were then obtained by combining Stephan–Maxwell
iffusion equations with the overpotential profiles resulting from
he charge transport model. In the case of the H2–H2O–CO–CO2–N2
ystem (SOFC anode), by considering H2/CO co-oxidation, we
erived an analytical expression of the ratio of H2 and CO elec-
rochemical current density. In this regard, the thermodynamic
ramework can provide a first information for kinetics analysis.

We  further integrated the electrode-level model into an along-
he-channel simulation. This results in an overall 1D + 1D model,
here one dimension is solved analytically and one dimension is

olved numerically. For the reactant system of H2–H2O–N2 and
2–N2, a linear relationship between the along-the-channel pro-
les of local current density and solid temperature was further
eveloped in both cases of concurrent and countercurrent flow.
he 1D + 1D model was validated by comparison to two  different
umerical models developed previously by the authors. In addition,
hen comparing 1D + 1D against 1D models, we found that the log-

rithmic mean of the inlet and outlet species concentrations can be
sed as boundary condition at the channel/electrode interface in
D simulations.

Based on the approximations applied to both dimensions, the
omputational efficiency of the 1D + 1D model presented in this
aper approaches that of a zero-dimensional model. Generally, it
nly takes several seconds to complete a distributed cell-level sim-
lation, which is valuable for real-time simulations and multi-scale
uel cell models.
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ppendix A. WKB  perturbation method

Expand the exponent function as Taylor series

′′ = k0[exp(˛ay) − exp(−˛cy)] = k0

∞∑
n=0

˛n
a − (−˛c)n

n!
yn

= 
2
∞∑

n=1

anyn (A1)

here

 =
√

k0(˛a + ˛c), an = ˛n
a − (−˛c)n

(˛a + ˛c)n!
(A2)

When k0 is a large number, 1/
  can be used as a perturbation
ariable. Assume

 = exp(
G) and G = G0 + 
−1G1 (A3)

When only zero-order term of exponent function is considered

∞

n=1

anyn =
∞∑

n=1

ane
nG ≈ e
G

∞∑
n=1

an (A4)

Substitute Eqs. (A3) and (A4) into Eq. (A1), we  obtain
′2
0 + 
−1(2G′

0G′
1 + G′′

0) =
∞∑

n=1

an (A5)
er Sources 210 (2012) 67– 80 79

So,

⎧⎪⎪⎨
⎪⎪⎩

G′2
0 =

∞∑
n=1

an

2G′
0G′

1 + G′′
0 = 0

⇒

⎧⎪⎪⎨
⎪⎪⎩

G′
0 = ±

√ ∞∑
n=1

an = ±
√

e˛a − e−˛c

˛a + ˛c

G1 = −1
2

ln G′
0

(A6)

Substitute G0 and G1 into Eq. (A3), we  can obtain the general
solution

y = c1 exp

(



√
e˛a − e−˛c

˛a + ˛c
x

)
+ c2 exp

(
−


√
e˛a − e−˛c

˛a + ˛c
x

)
(A7)

where G1 has been included in the constant c1 and c2.

Appendix B. Linear relationship between current density
and solid temperature

From Eqs. (60) and (62), there is

Ta,j − Ts,j = aj−1Ta,1 + (1 − a)

m=j−1∑
m=2

aj−mTs,m − aTs,j

Tc,j − Ts,j = bj−1Tc,1 + (1 − b)

m=j−1∑
m=2

bj−mTs,m − bTs,j (coflow)

Tc,j − Ts,j = bn−j+2Tc,n+2 + (1 − b)
∑m=j+1

m=n+1
bm−jTs,m − bTs,j (counterflow)

(B1)

Substitute it into the discrete form of Eq. (56), we obtain
the linear relationship between the local current den-
sity vector [I] = [I1,. . .In]T and the solid temperature vector
[Ts] = [Ts,2,. . .Ts,n+1]T, i.e. [I] = [A][Ts] + [B], the elements of matrix
[A] and [B] are

For concurrent flow

A1,1 = −(�aSh,ahaa + �cSh,chcb + (�s/�z2))
K

A1,2 = �s

K�z2
, A1,j = 0 (j = 3 . . . n)

Ai,j = [�aSh,aha(1 − a)ai−j+2 + �cSh,chc(1 − b)bi−j+2]
K

(j = 1 . . . i − 2)

Ai,i−1 = [�aSh,aha(1 − a)a + �cSh,chc(1 − b)b + (�s/�z2)]
K

Ai,i = −(�aSh,ahaa + �cSh,chcb + (2�s/�z2))
K

Ai,i+1 = �s

K�z2
(i = 2 . . . n − 1)

An,j = [�aSh,aha(1 − a)an−j+2 + �cSh,chc(1 − b)bn−j+2]
K

(j = 1 . . . n − 2)

An,n−1 = [�aSh,aha(1 − a)a + �cSh,chc(1 − b)b + (�s/�z2)]
K

An,n = −(�aSh,ahaa + �cSh,chcb + (�s/�z2))
K

(B2)
Bi = (�aSh,ahaaiTa,in + �cSh,chcbiTc,in)
K

(i = 1 . . . n) (B3)



8  of Pow

B

w

K

R

[

[

[

[

[

[

[
[
[
[

[
[

[

[

[

[
[

0 C. Bao, W.G. Bessler / Journal

For countercurrent flow

A1,1 = −(�aSh,ahaa + �cSh,chcb + (�s/�z2))
K

A1,2 = [�cSh,chc(1 − b)b + (�s/�z2)]
K

A1,j = �cSh,chc(1 − b)bj−1

K
(j = 3 . . . n)

Ai,j = �aSh,aha(1 − a)ai−j+2

K
(j = 1 . . . i − 2)

Ai,i−1 = [�aSh,aha(1 − a)a + (�s/�z2)]
K

(i = 2 . . . n − 1)

Ai,i = −(�aSh,ahaa + �cSh,chcb + (2�s/�z2))
K

Ai,i+1 = [�cSh,chc(1 − b)b + (�s/�z2)]
K

Ai,j = �cSh,chc(1 − b)bj−i

K
(j  = i + 2 . . . n)

An,j = �aSh,aha(1 − a)an−j

K
(j  = 1 . . . n − 2)

An,n−1 = [�aSh,aha(1 − a)a + �cSh,chc(1 − b)b + (�s/�z2)]
K

An,n = −(�aSh,ahaa + �cSh,chcb + (�s/�z2))
K

(B4)

i = (�aSh,ahaaiTa,in + �cSh,chcbn−i+1Tc,in)
K

(i  = 1 . . . n) (B5)

here the adiabatic conditions of solid phase, ∂Ts/∂z
∣∣
z=0

=
∂Ts/∂z

∣∣
z=L

= 0 have been included and the denominator K is

 = �rib�cSm,c

(
Vcell + �Href

neF

)
(B6)
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